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Unified view of scaling laws for river networks
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Scaling laws that describe the structure of river networks are shown to follow from three simple assump-
tions. These assumptions are~1! river networks are structurally self-similar,~2! single channels are self-affine,
and ~3! overland flow into channels occurs over a characteristic distance~drainage density is uniform!. We
obtain a complete set of scaling relations connecting the exponents of these scaling laws and find that only two
of these exponents are independent. We further demonstrate that the two predominant descriptions of network
structure~Tokunaga’s law and Horton’s laws! are equivalent in the case of landscapes with uniform drainage
density. The results are tested with data from both real landscapes and a special class of random networks.
@S1063-651X~99!01205-2#

PACS number~s!: 64.60.Ht, 92.40.Fb, 92.40.Gc, 68.70.1w
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I. INTRODUCTION

If it is true that scaling laws abound in nature@1#, then
river networks stand as a superb epitome of this phen
enon. For over half a century, researchers have uncov
numerous power laws and scaling behaviors in the m
ematical description of river networks@2–9#. These scaling
laws, which are usually parametrized by exponents or ra
of fundamental quantities, have been used to validate sc
of numerical and theoretical models of landscape evolu
@10–23# and have even been invoked as evidence of s
organized criticality@23,24#. However, despite this wide
spread usage, there is as yet no fundamental understan
of the origin of scaling laws in river networks.

It is the principal aim of this paper to bring together
large family of these scaling laws within a simple, logic
framework. In particular, we demonstrate that from a base
three assumptions regarding network geometry, all sca
laws involving planform quantities may be obtained. T
worth of these consequent scaling laws is then seen to
squarely upon the shoulders of the structural assumpt
themselves. We also simplify the relations between the
rived laws, demonstrating that only two scaling expone
are independent.

The paper is composed in the following manner. We fi
present preliminary definitions of network quantities and
list of empirically observed scaling laws. Our assumptio
will next be fully stated along with evidence for their valid
ity. Several sections will then detail the derivations of t
various scaling laws, being a combination of both new
sights of our own as well as previous results. Progressin
a systematic way from our assumptions, we will also be
quired to amend several inconsistencies persistent in o
analyses. The theory will be tested with comparisons to d
taken from real landscapes and Scheidegger’s random
work model@25,26#.

*Author to whom correspondence should be addressed. Electr
address: dodds@mit.edu
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II. ORDERING OF STREAMS

A basic tool used in the analysis of river networks is t
device of stream ordering. A stream ordering is any sche
that attaches levels of significance to streams througho
basin. Most orderings identify the smallest tributaries as lo
est order streams and the main or ‘‘trunk’’ stream as being
highest order with the intermediary ‘‘stream segment
spanning this range in some systematic fashion. Stream
derings allow for logical comparisons between different pa
of a network and provide a basic language for the descrip
of network structure.

Here, we build our theory using the most common ord
ing scheme, one that was first introduced by Horton in
seminal work on erosion@2#. Strahler later improved this
method @27# and the resulting technique is commonly r
ferred to as Horton-Strahler stream ordering@23#. The most
natural description of this stream ordering, due to Melt
@28#, is based on an iterative pruning of a tree representin
network as shown in Fig. 1. All source~or external! streams
are pared away from the tree, these being defined as
network’s first order stream segments. A new tree is th
created along with a new collection of source streams
these are precisely the second-order stream segments o
original network. The pruning and order identification co
tinues in like fashion until only the trunk stream segment
the river network is left. The overall order of the basin itse
is identified with the highest stream order present.

The usual and equivalent description details how stre
orders change at junctions@23#. When a stream segment o
order v1 merges with a stream segment of orderv2, the
outgoing stream will have an order ofv given by

v5max~v1 ,v2!1dv1 ,v2
, ~1!

whered is the Kronecker delta. In other words, stream ord
only increases when two stream segments of the same o
come together and, otherwise, the highest order is m
tained by the outflowing stream.
ic
4865 ©1999 The American Physical Society
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FIG. 1. Horton-Strahler stream ordering.~a! shows the basic
network. ~b! is created by removing all source streams from
network in ~a!, these same streams being denoted as first o
‘‘stream segments.’’ The new source streams in the pruned netw
of ~b! are labeled as second-order stream segments and are
selves removed to give~c!, a third-order stream segment.
III. PLANFORM NETWORK QUANTITIES
AND SCALING LAWS

The results of this paper pertain to networks as viewed
planform. As such, any effects involving relief, the vertic
dimension, are ignored. Nevertheless, we show that a co
ent theory of planform quantities may still be obtained. Th
section defines the relevant quantities and their various
mutations along with scaling laws observed to hold betwe
them. The descriptions of these laws will be short and m
detail will be provided in later sections.

The two essential features in river networks are bas
and the streams that drain them. The two basic planfo
quantities associated with these are drainage area and st
length. An understanding of the distribution of these quan
ties is of fundamental importance in geomorphology. Dra
age area, for example, serves as a measure of average
charge of a basin while its relationship with the length of t
main stream gives a sense of how basins are shaped.

A. General network quantities

Figure 2 shows a typical drainage basin. The basin f
tures area, the area,l, the length of the main stream, andL i
andL' , the overall dimensions. The main~or trunk! stream
is the dominant stream of the network—it is traced out
moving all the way upstream from the outlet to the start o
source stream by choosing at each junction~or fork! the in-
coming stream with the largest drainage area. This is no
be confused with stream segment length which only ma
sense in the context of stream ordering. We will usua
write L for L i . Note that any point on a network has its ow
basin and associated main stream. The sub-basin in Fi
illustrates this and has its own primed versions ofa, l, L i ,
and L' . The scaling laws usually involve comparisons b
tween basins of varying size. These basins must be from
same landscape and may or may not be contained wi
each other.

Several scaling laws connect these quantities. One of
most well known is Hack’s law@5#. Hack’s law states thatl
scales witha as

er
rk
m-

FIG. 2. A planform view of an example basin. The main defi
ing parameters of a basin area, the drainage areal, the length of the
main stream, andL i andL' , the overall Euclidean dimensions. Th
sub-basin with primed quantities demonstrates that a basin exis
every point in a network.
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l;ah, ~2!

whereh is often referred to as Hack’s exponent. The imp
tant feature of Hack’s law is thathÞ1/2. In particular, it has
been observed that for a reasonable span of basin sizes
0.57,h,0.60@5,9,29,30#. The actual range of this scaling
an unresolved issue with some studies demonstrating
very large basins exhibit the more expected scaling oh
51/2 @31–33#. We simply show later that while the assum
tions of this paper hold so too does Hack’s law.

Further comparisons of drainage basins of different si
yield scaling in terms ofL(5L i), the overall basin length
Area, main stream length, and basin width are all observe
scale withL @9,6–8,34#,

a;LD, l;Ld, L';LH. ~3!

Turning our attention to the entire landscape, it is a
observed that histograms of stream lengths and basin a
reveal power law distributions@9,23#:

P~a!;a2t and P~ l !; l 2g. ~4!

There are any number of other definable quantities and
will limit ourselves to a few that are closely related to ea
other. We writel for the average distance from a point o
the network to the outlet of a basin~along streams! andL for
the unnormalized total of these distances. A minor variat
of these arel̃ andL̃, where only distances from junctions i
the network to the outlet are included in the averages.

The scaling law involving these particular quantities
Langbein’s law@3#, which states that

L;ab. ~5!

Similarly, we havel;Lw, L̃;ab̃, andl̃;L w̃ @9#.

B. Network quantities associated with stream ordering

With the introduction of stream ordering, a whole ne
collection of network quantities appear. Here, we present
most important ones and discuss them in the context of w
we identify as the principal structural laws of river network
Tokunaga’s law and Horton’s laws.

1. Tokunaga’s law

Tokunaga’s law concerns the set of ratios$Tv,v8% first
introduced by Tokunaga@35–39#. These ‘‘Tokunaga ratios’’
represent the average number of streams of orderv8 flowing
into a stream of orderv as side tributaries. In the case
what we will call a ‘‘structurally self-similar network,’’ we
have thatTv,v85Tv2v85Tn wheren5v2v8 since quanti-
ties involving comparisons between features at differ
scales should only depend on the relative separation of th
scales. TheseTn , in turn, are observed to be dependent su
that @35#,

Tn11 /Tn5RT , ~6!

whereRT is a fixed constant for a given network. Thus, all
Tokunaga’s ratios may be specified by two fundamental
rametersT1 andRT :
-
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Tn5T1~RT!n21. ~7!

We refer to this last identity as Tokunaga’s law.
The network parameterT1 is the average number of majo

side tributaries per stream segment. So for a collection
stream segments of orderv, there will be on averageT1 side
tributaries of orderv21 for each stream segment. The se
ond network parameterRT describes how numbers of sid
tributaries of successively lower orders increase, again,
average. As an example, consider that the network in Fig
is part of a much larger network for whichT152 andRT
54. Figure 1~b! shows that the third-order stream segme
has two major side tributaries of second order that fits
actly with T152 ~Note that the two second-order strea
segments that come together to create the third-order str
segment are not side tributaries!. Figure 1~a! further shows
nine first order tributaries, slightly above the average ei
suggested byT25T1RT

158. Finally, again referring to Fig.
1~a!, there are 9/452.25 first-order tributaries for each se
ond order stream segment, not far from the expected num
T152.

2. Horton’s laws

Horton introduced several important measurements
networks in conjunction with his stream ordering@2#. The
first is the bifurcation ratioRn . This is the ratio of the num-
bernv of streams of orderv to the numbernv11 of streams
of orderv11 and is, moreover, observed to be independ
of v over a large range. There is next the stream length ra
Rs5 s̄v11 / s̄v , wheres̄v is the average length of stream se
ments of orderv. These lengths only exist within the conte
of stream ordering. In contrast to these are the main stre
lengths, which we have denoted byl and described in Sec
III A. Main stream lengths are defined regardless of stre
ordering and, as such, are a more natural quantity. Note
stream ordering gives rise to a discrete set of basins, one
each junction in the network. We therefore also have a se
basin areas and main stream lengths defined at each junc
Taking averages over basins of the same order we haveāv

and l̄ v to add to the previously defineds̄v andnv .
The connection between the two measures of stre

length is an important, if simple, exercise@40#. Assuming
s̄v115Rs s̄v holds for allv, one has

l̄ v5(
i 51

v

s̄i5(
i 51

v

~Rs!
i 21s̄15 l̄ 1

~Rs!
v21

Rs21
~8!

where l̄ 15 s̄1 has been used. Since typicallyRs.2 @41#,
l̄ v11 / l̄ v→Rs rapidly. Forv54 andRs52, the error is only
3%. On the other hand, starting with the assumption t
main stream lengths satisfy Horton’s law of stream leng
for all v implies that the same is true for stream segmen

Thus, for most calculations, Horton’s law of strea
lengths may involve either stream segments or main stre
and, for convenience, we will assume that the law is fu
satisfied by the former. Furthermore, this small calculat
suggests that studies involving only third- or fourth-ord
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TABLE I. A general list of scaling laws for river networks. All laws and quantities are defined in Sec
The principal finding of this paper is that these scaling laws follow from the first two relations, Tokun
law ~structural self-similarity! and the self-affinity of single channels, and the assumption of uniform drain
density~defined in Sec. IV C!.

Law Name or description

Tn5T1(RT)n21 Tokunaga’s law
l;Ld self-affinity of single channels
nv11 /nv5Rn Horton’s law of stream numbers

s̄v11 / s̄v5Rs
Horton’s law of stream segment lengths

l̄ v11 / l̄ v5Rl
Horton’s law of main stream lengths

āv11 /āv5Ra
Horton’s law of stream areas

l;ah Hack’s law
a;LD scaling of basin areas
L';LH scaling of basin widths
P(a);a2t probability of basin areas
P( l ); l 2g probability of stream lengths
L;ab Langbein’s law
l;Lw variation of Langbein’s law

L̃;ab̃ as above

l̃;L w̃ as above
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networks cannot be presumed to have reached asymp
regimes of scaling laws. We will return to this point throug
out the paper.

Schumm@42# is attributed with the concrete introductio
of a third and final law that was also suggested by Hort
This last ratio is for drainage areas and states thatRa

5āv11 /āv . We will later show in Sec. VII that our assump
tions lead to the result thatRa[Rn . At this stage, however
we write Horton’s laws as the three statements

nv

nv11
5Rn ,

s̄v11

s̄v

5Rs , and
āv11

āv

5Ra . ~9!

A summary of all of the scaling laws presented in th
section is provided in Table I. Empirically observed valu
for the relevant exponents and ratios are presented in T
II.

C. Scheidegger’s random networks

To end this introductory section, we detail some of t
features of the random network model of Scheideg
@25,26#. Although originally defined without reference to
real surface, Scheidegger networks may be obtained fro
completely uncorrelated landscape as follows. Assign a
dom height between 0 and 1 at every point on a triangu
lattice and then tilt the lattice so that no local minima~lakes!
remain. Scheidegger networks are then traced out by foll
ing paths of steepest descent.

Surprisingly, these networks still exhibit all of the scalin
laws observed in real networks. It thus provides an import
point in ‘‘network space’’ and accordingly, also provides
elementary test for any theory of scaling laws. Exact anal
cal results for various exponents are known due to the w
of Takayasu and co-workers on the aggregation of parti
with injection @43–48#. While there are no analytic result
tic
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for the Tokunaga ratioT1 or the Horton ratiosRn and Rs ,
our own simulations show that these stream order laws
strictly obeyed. Table II lists the relevant exponents and th
values for the Scheidegger model along with those found
real networks.

IV. ASSUMPTIONS

We start from three basic assumptions about the struc
of river networks: structural self-similarity, self-affinity o
individual streams and uniformity of drainage density. W
define these assumptions and their relevant parameters

TABLE II. Ratios and scaling exponents for Scheidegger’s ra
dom network model and real networks. For Scheidegger’s mo
exact values are known due to the work of Takayasu and
workers@43–48# and approximate results are taken from our ow
simulations. For real networks, the references given are gene
the most recent and further appropriate references may be fo
within them and also in Sec. III.

Quantity Scheidegger Real networks

Rn 5.2060.05 3.0–5.0@49#

Ra 5.2060.05 3.0–6.0@49#

Rs 3.0060.05 1.5–3.0@49#

T1 1.3060.05 1.0–1.5@36#

d 1 1.160.01 @9#

D 3/2 1.860.1 @9#

h 2/3 0.57–0.60@9#

t 4/3 1.4360.02 @9#

g 3/2 1.860.1 @30#

w 1 1.0560.01 @9#

H 1/2 0.75–0.80@9#

b 5/3 1.56@3#

w 1 1.0560.01 @9#
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then discuss their mutual consistency. We end with a disc
sion of the correspondence between the laws of Tokun
and Horton. It should be stressed that while we make a c
for each assumption there is also considerable proof to p
der in the pudding that these ingredients create.

A. Structural self-similarity

Our first assumption is that networks are structurally s
similar. It has been observed that river networks exhibit s
similarity over a large range of scales@1,6,23#. Naturally, the
physical range of this self-similarity is restricted to lie b
tween two scales. The large scale cutoff is the overall siz
the landscape and the small scale cutoff is of the order of
characteristic separation of channels@50#.

In order to quantify this phenomenon, we look to laws
network structure such as Tokunaga’s law and Horton’s la
of stream number and length. We demonstrate in the follo
ing section that these descriptions are mutually consis
within the context of our third assumption, uniformity o
drainage density. Thus, we may assume a network wh
both Tokunaga’s and Horton’s laws hold. For convenien
we write these laws as if they hold for all orders down to t
first order. Any actual deviations from these laws for lo
orders will not affect the results since we are interested
how laws behave for increasing stream order.

We note here that the second and more stringent requ
ment provided by Eq.~6! may be seen to sit self-consistent
with the assumption of uniform drainage density. This w
be discussed later together with the equivalence betw
Tokunaga’s law and the well-known Horton’s laws.

B. Self-affinity of individual streams

Our second assumption is that individual streams are s
affine curves possessing a dimensiond.1, as introduced in
Eq. ~3!. Empirical support for this premise is to be found
@6–9,23,51#. In reality, this is at best a weak fractality wit
measurements generally findingd to be around 1.1@9#. We
assumed to be constant throughout a given network, true
each stream independent of order.

In general, it is most reasonable to consider this in
sense of a growing fractal: stream lengthl will grow like Ld

whereL is the overall length of a box containing a portion
a stream. So, rather than examine one fixed section
stream, we take larger and larger pieces of it. Moreover,
is the most reasonable method for actually measuringd for a
real network.

C. Uniform drainage density

Our third and final assumption is that drainage density
uniform throughout a network. For a given basin, the dra
age densityr is a measure of the average area drained
unit length of stream by overland flow~i.e., excluding con-
tributions from tributary streams!. Its usual form is that given
by Horton @2#:

r5
( s

a
~10!

where, for a given basin,(s represents the summed tot
s-
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length of all stream segments of all orders anda is the drain-
age area. More generally, one can in the same way mea
a local drainage density for any connected sections of a
work within a landscape. Such sections should cover a
gion at leasts1 in diameter, the typical length of a first-orde
stream. Drainage density being uniform means that the va
tion of this local drainage density is negligible. There is go
support in the literature for the uniformity of drainage de
sity in real networks@5,52–56# while there are some sugge
tions that it may vary slightly with order@5,36#.

Uniform drainage density may also be interpreted as
observation that the average distance between channe
roughly constant throughout a landscape@2,23#, an estimate
of this distance being simply 1/r. This is due to the fact tha
there is a finite limit to the channelization of a landsca
determined by a combination of soil properties, climate a
so on. Implicit in this assumption is that the channel netwo
has reached its maximum extension into a landscape@52,57#.
Indeed, In the bold words of Glock@57#, we are considering
river networks at the ‘‘time of completed territorial con
quest.’’ Furthermore, Shreve@52# notes that drainage densit
would be uniform in a ‘‘mature topography developed in
homogeneous environment.’’

Importantly, our third assumption connects the planfo
description to the surface within which the network lie
Computationally, the uniformity of drainage density allow
for the use of the length of a stream as a proxy for drain
area@56#. Further, the average distance between streams
ing roughly constant implies that, on average, tributaries
spaced evenly along a stream.

Finally, it should be noted that nearly all lattice-bas
models of landscape evolution satisfy this assumption. T
is simply because a flow direction is usually calculated
each point of some regular two-dimensional lattice. Con
quently, streams are defined everywhere. For each lattice
length of stream there is lattice cell’s worth of drainage ar
Notably, the typical analysis of digital elevation mode
~DEM’s! proceeds in the same fashion.

V. TOKUNAGA’S LAW AND HORTON’S LAWS
ARE EQUIVALENT

This section demonstrates an equivalence betw
Tokunaga’s law and Horton’s two laws of stream numb
and stream length in the case of a landscape with unifo
drainage density.

A. From Tokunaga’s law to Horton’s laws

Tokunaga has shown that Horton’s law for stream nu
bers follows from Tokunaga’s law@given in Eq.~7!# @36,38#.
This follows from the observation thatnv , the number of
streams of orderv, in a basin of orderV may be expressed
as

nv52nv111 (
n51

V2v

Tnnv1n . ~11!

The 2nv11 accounts for the fact that each orderv11 stream
is initiated by the confluence of two streams of orderv.
Presuming Tokunaga’s law, a simple analysis of Eq.~11!
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shows that in the limit of largeV, the rationv /nv11 does
indeed approach a constant. This leads to an expressio
the Horton ratioRn in terms of the two Tokunaga paramete
T1 andRT ~first obtained by Tokunaga in@36#!:

2Rn5~21RT1T1!1@~21RT1T1!228RT#1/2. ~12!

Tokunaga’s work has been recently generalized by Pe
ham, who deduces links to the other Horton ratiosRs andRa
@38#. In contrast to the purely algebraic calculation ofRn ,
these results require the step of equating topological pro
ties to metric basin quantities. In determiningRs , Peckham
uses the number of side tributaries to a stream as an esti
of stream segment length. This is based on the assump
that tributaries are evenly spaced. As discussed in Sec. I
this even spacing of tributaries follows for networks wi
uniform drainage density. Therefore, we may write, af
Peckham, that

s̄v}11 (
n51

v21

Tn , ~13!

where the dimension of length absent on the right-hand
is carried by an appropriate constant of proportionality. T
sum is simply the total number of tributaries that, on av
age, enter a stream of orderv. The number of lengths o
stream between tributaries is then simply one more in nu
ber.

Using Tokunaga’s law@Eq. ~7!# we find that

s̄v11 / s̄v5RT„11O~RT!2v
…, ~14!

obtaining Horton’s stream length ratio with the simple ide
tification

Rs5RT ~15!

and we will useRs in place ofRT throughout the rest of the
paper. As already noted we will see thatRa[Rn for land-
scapes where drainage density is uniform. This redunda
means that there are only two independent Horton ratiosRs
andRn , which sits well with the two independent quantitie
required for Tokunaga’s law,T1 andRT . Presupposing this
result, we can invert Eqs.~12! and~15! to obtain Tokunaga’s
parameters from the two independent Horton ratios:

RT5Rs , ~16!

T15Rn2Rs2212Rs /Rn . ~17!

B. From Horton’s laws to Tokunaga’s law

We now provide an heuristic argument to show th
Tokunaga’s law in the form of Eq.~7! follows from Horton’s
laws of stream number and length and uniform drainage d
sity. Note that even though we have shown in Eq.~12!, ~15!,
and~17! that the parameters of Tokunaga’s law and those
Horton’s laws may be obtained from each other, it is noa
priori clear that this result would be true. Indeed, Tokun
ga’s law contains more direct information about netwo
structure than Horton’s laws and it is the additional co
straint of uniform drainage density that provides the key.
for
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Consider a stream of orderv along with its side tributar-
ies of orderv851 throughv85v21, the numbers of which
are given by the usualTn where n5v2v8 ~see Fig. 3!.
Since the presumed adherence to Horton’s laws implies
a network is self-similar we need only consider the form
the Tn and not the more generalTv8,v . Now, again since
networks are self-similar, a typical stream of orderv11 can
be obtained by scaling up the picture of this orderv stream.
As per Horton’s law of stream lengths, this is done by
creasing the length of each stream by a factor ofRs @Fig. 3~a!
becomes Fig. 3~b!#.

However, since orderv8 streams becomev811 streams
in this rescaling, the picture in Fig. 3~b! is missing first order
streams. Also, the average distance between tributaries
grown by a factor ofRs . Therefore, to retain the same drai
age density, an extra (Rs21) first-order streams must b
added for each link~one more than the number of tributarie!
along this new orderv11 stream@Fig. 3~c!#. Since the num-
ber of first-order streams is now given byTv11 we have

Tv115~Rs21!S (
n51

v

Tn11D . ~18!

It may be simply checked that this equation is satisfied,
largev, by Tokunaga ratios given by Eq.~7!. Thus, Horton’s
laws of stream number and stream length and the unifo
drainage density are seen to imply Tokunaga’s law.

In general, Horton’s ratios rather than the parameters
Tokunaga’s law will be the most useful parameters in w
follows. In particular, we will see that the two independe
quantities Rn and Rs will be needed only in the form
ln Rn /ln Rs. All other exponents will be expressible as alg
braic combinations of lnRn /ln Rs andd, the fractal dimension
of an individual stream.

Furthermore, example~or modal! values for the param-
eters of Horton and Tokunaga are@36,41#

T151, RT5Rs52, and Rn54. ~19!

FIG. 3. An example rescaling of a basin to demonstrate h
Tokunaga’s law follows from Horton’s laws and uniform draina
density. In the first step from~a! to ~b!, the streams of the smal
network are rescaled in length by a factor ofRs . The second step
from ~b! to ~c! demonstrates that for drainage density to rem
constant and uniform, a sufficient number of first-order tributar
must be added.
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The parameters have been chosen so as to satisfy the i
sion relations of Eq.~17!. As shown in Table II, real net
works provide some variation around these modal valu
These will be used as rough checks of accuracy through
the rest of the paper.

VI. HACK’S LAW

One of the most intriguing scalings found in river ne
works is Hack’s law@5#, which relates main stream length
basin area asl;ah. This equation has been empirical
shown to hold true for a large range of drainage basin s
on many field sites@23#. The salient feature is that fo
smaller basins@30#, h is typically found to be in the range
(0.56,0.60), whereas 0.5 would be expected from simple
mensional analysis@23#.

It should be emphasized that Hack’s law is only true
average as are, for that matter, Tokunaga’s law and Hort
laws. An extension of Hack’s law to a more natural statisti
description of the connection between stream lengths
drainage areas was suggested by Maritanet al. @9# with some
further developments to be found in@58#.

A. Horton’s other law of stream numbers

In order to obtain Hack’s law, we will use the uniformit
of drainage density to estimate the area of an orderV basin
by calculating the total length of streams within the sa
basin. So we simply need the typical length and numbe
each stream order present. Taking the length of a so
stream,s̄1, to be the finest resolution of the network and t
basic unit of length, the length of a stream segment of or
v is s̄v5(Rs)

v21s̄1. However, in finding the frequency o
such streams we find that some care must be taken for
following reasons.

Horton’s law of stream numbers is potentially misleadi
in that it suggests, at first glance, that within a basin of or
v there should be one stream of orderv, Rn streams of order
v21, Rn

2 streams of orderv22, and so on. Indeed, man
calculations involving Horton’s laws use this assumpti
@7,23,56,59#.

But Horton’sRn actually provides the ratio of the numbe
of streams of consecutive orders as totalled for awhole ba-
sin. To illustrate this fact, consider streams of orderv and
v11 within a basin of orderV@v. As Tokunaga’s law
makes clear, streams of orderv are not all found within
sub-basins of orderv11. Indeed, a certain number of ord
v streams will be tributaries to streams of order greater t
v11 @see the example network of Fig. 1~a!#. Tokunaga’s
law shows that we should in fact expectT112 rather than
than Rn streams of orderv entering into a stream of orde
v11. For the typical valuesT151 andRn54 in Eq. ~19!
this is a substantial error.

We proceed then to find a corrected version of Horto
law of stream numbers. Returning to Eq.~11!, we see that it
is only valid in the limit V→`. Defining n8(v,V) as the
actual number of streams of orderv within a basin of order
V, we have

n8~v,V!52n8~v11,V!1 (
n51

V2v

Tnn8~v1n,V!. ~20!
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This equation may be exactly solved. Considering the ab
expression forn8(v,V) and the corresponding one fo
n8(v11,V) we can reduce this to a simple difference equ
tion,

n8~v,V!5~21Rs1T1!n8~v11,V!22Rsn8~v12,V!,
~21!

which has solutions of the formmk. Applying the constraints
that n8(V,V)51 andn8(V21,V)5T112, we obtain

n8~v,V!5c~m1!V2v1~12c!~m2!V2v, ~22!

where

2m65~21Rs1T1!6@~21Rs1T1!28Rs#
1/2 ~23!

and

c5Rn~Rn2Rs!/~Rn
222Rs!. ~24!

Note thatRn5m1 and we will use the notationRn* in place
of m2 . This observation regarding Horton’s law of strea
numbers was first made by Tokunaga@35# and later by Smart
@60#. In particular, Tokunaga noted that this would expla
the deviation of Horton’s law for the highest orders of
basin, a strong motivation for his work.

We can now define an effective Horton ratio,Rn8(v,V)
as follows:

Rn8~v,V!5n8~v21,V!/n8~v,V!

5Rn„11O~Rn* /Rn!~V2v!
…. ~25!

The typical values of Horton’s ratios in Eq.~19! give Rn*
51. In this case,Rn8(v,V) converges rapidly toRn with an
error of around one per cent forv5V23.

B. Hack’s law

As discussed in Sec. IV C, an estimate of total draina
area of a basin is given by the total length of all strea
within the basin. Summing over all stream orders and us
the numbersn8(v,V) given by Eqs.~22! and ~23! we have
that

āV} (
v51

V

n8~v,V!~Rs!
v21

5c1~Rn!V1c2~Rs!
V2c3~Rn* !V, ~26!

where c15c/(Rn2Rs), c35(12c)/(Rs2Rn* ) and c25c3

2c1 with c being given in Eq.~24!. Slightly more compli-
cated is the estimate ofā(v,V), the drainage area of a bas
of orderv within a basin of orderV:

ā~v,V!}@1/n8~v,V!# (
v851

v

n8~v8,V!~Rs!
v821

5@1/n8~v,V!#$c1~Rn!V@12~Rs /Rn!v#

1c3~Rs!
v~Rn* !V2v@12~Rn* /Rs!

v#%. ~27!
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Now, for 1!v!V ~typically, 3,v,V22 is sufficient!,
this expression is well approximated as

ā~v,V!;~Rn!v. ~28!

sinceRn.Rs.Rn* .
Thus, we have also shown here thatRa[Rn . While it is

true that we would have obtained the same with a naive
of Horton’s laws, we have both made the derivation th
ough and established the correction terms found in Eq.~27!.
This will be investigated further in the next section.

Finally, using this result and the estimatel̄ v}(Rs)
v from

Eq. ~8!, it follows that

l̄ v}~Rs!
v5~Rn!v ln Rs / ln Rn;~ āv! ln Rs / ln Rn, ~29!

which is precisely Hack’s law. Comparing Eqs.~29! and~2!,
Hack’s exponent is found in terms of the Horton ratiosRn
andRs as

h5
ln Rs

ln Rn
. ~30!

There is one minor caveat to the derivation in Eq.~29! and,
for that matter, to most other derivations in this paper. Eq
tion ~29! only holds for the characteristic areas and leng
āv and l̄ v . Since these quantities grow exponentially w
v, the derivation gives evenly spaced points on a log-
plot lying on a straight line. Clearly, this would indicate th
the actual relationship is continuous and linear on a log-
plot. Indeed, there is no obvious reason that a network wo
prefer certain lengths and areas. The averaging of str
lengths and areas brought about by the imposition of stre
ordering necessarily removes all information contained
higher-order statistics. Motivated by this observation, gen
alizations of the laws of Tokunaga, Horton, and Hack to la
of distributions rather than averages is in progress@58#.

VII. THERE ARE ONLY TWO HORTON RATIOS

In deriving Hack’s law in the previous section we o
tained from Eq.~28! that Ra[Rn . This redundancy in Hor-
ton’s laws is implicit in, amongst others, the works of Hort
@2# and Hack@5# but has never been stated outright. As no
previously, Peckham also obtains a similar result for a to
logical quantity, the number of source streams in a ba
that is used as an estimate of area. Thus, we see that
landscape with uniform drainage density, Horton’s laws
fully specified by only two parametersRn andRs . This fur-
ther supports our claim that Tokunaga’s law and Horto
laws are equivalent since we have shown that there is
invertible transformation between (T1 ,RT), the parameters
of Tokunaga’s law, and (Rn ,Rs) @Eqs.~12!, ~15!, and~17!#.
In this section, we present data from real networks that s
port the findingRn5Ra . We also address reported cases t
do not conform to this result and consider a possible ex
nation in light of the correction terms established in Eq.~26!.

Excellent agreement for the resultRn5Ra in real net-
works is to be found in the data of Peckham@38#. The data is
taken from an analysis of DEM’s for the Kentucky Rive
Kentucky and the Powder River, Wyoming. Figure 4 sho
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average area and stream number plotted as a functio
order for the Kentucky River while Fig. 5 shows the sam
for the Powder River. Note that stream number has b
plotted against decreasing stream order to make the com
son clear. The exponentsRa andRn are indistinguishable in
both cases. For the Kentucky River,Rn'Ra54.6560.05
and for the Powder River,Rn'Ra54.5560.05. Also of note
here is that the same equality is well satisfied by Scheid
ger’s model where numerical simulations yield values
Ra55.2060.05 andRn55.2060.05.

Note the slight deviation from a linear form for strea
numbers for largev in both cases. This upwards concavity
as predicted by the modified version of Horton’s law
stream numbers for a single basin, Eq.~22!.

At the other extreme, the fit for both stream areas a
stream numbers extends tov51. While this may seem re
markable, it is conceivable that at the resolution of t
DEM’s used, some orders of smaller streams may have b
removed by coarse graining. Thus,v51 may actually be,
for example, a third-order stream. Note that such a tran
tion in the value ofv does not affect the determination of th
ratios as it merely results in the change of an unimport

FIG. 4. Average area and stream number as functions of str
order for Kentucky River, Kentucky~data taken from Peckham
@38#!. The stream number data is reversed for simpler compar
with the area data. The Horton ratios are estimated to beRn'Ra

54.6560.05.

FIG. 5. Average area and stream number as functions of str
order for Powder River, Wyoming~data taken from Peckham@38#!.
Here the ratios areRn'Ra54.5560.05.
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multiplicative constant. Ifv r is the true order andv5v r
2m, wherem is some integer, then, for example,

nv}~Rn!v;~Rn!vr2m5const3~Rn!vr. ~31!

This is only a rough argument as coarse graining does
necessarily remove all streams of low orders.

At odds with the result thatRn[Ra are past measure
ments that uniformly findRa.Rn at a number of sites. Fo
example, Rossoet al. in @59# examine eight river networks
and findRa to be on average 40% greater thanRn . Clearly,
this may be solely due to one or more of the our assumpt
not being satisfied. The most likely would be that draina
density is not uniform. However, the limited size of the da
sets points to a stronger possibility which we now discus

In the case of@59#, the networks considered are all thir
or fourth order basins with one exception of a fifth ord
basin. As shown by Eq.~26!, if Horton’s laws of stream
number and length are exactly followed for all orders, H
ton’s law of area is not obeyed for lower orders. Moreov
the former are most likely asymptotic relations themselves
is thus unsatisfactory to make estimates of Horton’s ra
from only three or four data points taken from the lowe
order basins. Note that the Kentucky and Powder rivers
both eighth-order networks and thus provide a suffici
range of data.

We consider more precisely how the corrections to
scaling of area given in Eq.~27! would affect the measure
ment of the Horton ratios. Figure 6 shows an example
how stream number, length, and area might vary withv. It is
assumed, for the sake of argument, that stream number
length scale exactly as per Horton’s laws and that area
haves as in Eq.~27!, satisfying Horton’s law of area only fo
higher values ofv. The plot is made for the example value
Rn54 and Rs52. The prefactors are chosen arbitrarily
the ordinate is of no real significance.

A measurement ofRa from a few data points in the lowv
range will overestimate its asymptotic value as will a simi
measurement ofRn underestimate its true value. Estimates
Rn andRa from a simple least squares fit for various rang
of data are provided in Table III.

FIG. 6. An explanation for the empirical finding thatRn,Ra .
Fitting a line to the stream area for only lowv would result in an
overestimate of its asymptotic slope. For stream number, its s
would be underestimated.
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Thus, the validity of the methods and results from p
work are cast in some doubt. A reexamination of data t
has yieldedRa@Rn appears warranted with an added foc
on drainage density. Moreover, it is clear that networks o
much higher order must be studied to produce any reas
able results.

VIII. FRACTAL DIMENSIONS OF NETWORKS:
A REVISION

A number of papers and works over the past decade h
analyzed the relationships that exist between Horton’s la
and two fractal dimensions used to describe river netwo
@6–8,59,61–63#. These areD, the dimension which describe
the scaling of the total mass of a network, andd, the fractal
dimension of individual streams that comprises one of
assumptions. In this section, we briefly review these res
and point out several inconsistencies. We then provide a
vision that fits within the context of our assumptions.

Our starting point is the work of La Barbera and Ros
@7#, which was improved by Tarboton, Bras, and Rodrı´guez-
Iturbe to give@8#

D5d
ln Rn

ln Rs
. ~32!

We find this relation to be correct but that the assumptio
and derivations involved need to be redressed. To see
note that Eq.~32! was shown to follow from two observa

tions. The first was the estimation ofN( s̄1), the number of
boxes of sizes̄13 s̄1 required to cover the network@7#:

N~ s̄1!;~ s̄1!2 ln Rn / ln Rs ~33!

where s̄1 is the mean length of first order stream segmen
Note that Horton’s laws were directly used in this derivati
rather than the correctly modified law of stream numbers
single basins@Eq. ~22!#. Nevertheless, the results are th
same asymptotically. The next was the inclusion of our s
ond assumption, that single channels are self-affine@8#.
Thus, it was claimed,s̄1;d2d whered is now the length of
the measuring stick. Substitution of this into Eq.~33! gave

N~d!;d2d ln Rn / ln Rs, ~34!

yielding the stated expression forD, Eq. ~32!.
However, there is one major assumption in this work th

needs to be more carefully examined. The network is
sumed to be of infinite order, i.e., one can keep find

pe

TABLE III. Values of Horton ratios obtained from least squar
estimates of slopes for data represented in Fig. 6. The range
cates the data points used in the estimate of the slopes. The r
obtained from the low order data demonstrate substantial e
whereas those obtained from the middle data essentially give
true values ofRn5Ra54.

v range 1,2,3 1,2,3,4 1,2,3,4,5 4,5,6,7,8

Rn 2.92 3.21 3.41 3.99
Ra 5.29 4.90 4.67 4.00
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smaller and smaller streams. As we have stated, there
finite limit to the extension of any real network. The possib
practical effects of this are pictorially represented in Fig.
Consider that the network in question is of actual orderV.
Then there are three possible scaling regimes. First, fo
ruler of length d@ s̄1, only the network structure may b
detected, given that individual streams are almost one dim
sional. Here, the scaling exponent will be lnRn /ln Rs. Next,
as d decreases, the fractal structure of individual strea
may come into play and the exponent would approach tha
Eq. ~34!. Depending on the given network, this middle se
tion may not even be present or, if so, perhaps only a
small deviation as depicted. Finally, the contribution due
the overall network structure must vanish by the timed falls
below s̄1. From this point on, the measurement can o
detect the fractal nature of individual streams and so
exponent must fall back tod.

We therefore must rework this derivation of Eq.~32!. As
suggested in the definition ofd in Sec. IV B, it is more rea-
sonable to treat networks as growing fractals. Indeed, s
there is a finite limit to the extent of channelization of
landscape, there is a lower cutoff length scale beyond wh
most network quantities have no meaning. The only reas
able way to examine scaling behavior is to consider h
these quantities change with increasing basin size. Thi
turn can only be done by comparing different basins of
creasing order as opposed to examining one particular b
alone.

With this in mind, the claim that Eq.~32! is the correct
scaling can be argued as follows. Within some basin of or
V, take a sub-basin of orderv. ConsiderN(v), the number
of boxes of side lengths̄1 required to cover the sub-network
This is essentially given by the total length of all the strea
in the network. This is given by the approximation
Eq. ~28! and so we have thatN(v)}(Rn)v. Using the fact
that s̄v5(Rs)

v21s̄1 we then have that N(v)
}(sv / s̄1) ln Rn /ln Rs. The difference here is thats̄1 is fixed and
pertains to the actual first-order streams of the network.

FIG. 7. A schematic representing the problems associated
measuring the fractal dimension ofa single river network.Here, the
box counting method is assumed andd, which has the units of
length, is the side length of theN(d) boxes needed to cover th

network. For box sizes much greater thans̄13 s̄1, only the network

structure is detected while for box sizes smaller thans̄13 s̄1, the
measurement picks out the fractal dimension of individual strea
Some deviation towards the scaling suggested by Eq.~34! may
occur between these two limits.
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assumption, we have thatsv}Ld and thus

N~L !}Ld ln Rn / ln Rs, ~35!

which gives the same value forD as Eq.~32!.
There are two other relations involving fractal dimensio

that also need to be reexamined. First, Rosso, Bacchi, an
Barbera@59# found that

d52
ln Rs

ln Ra
. ~36!

Combining Eqs.~32! and ~36!, they then obtained

D52
ln Rn

ln Ra
. ~37!

However, Eq.~36! and hence Eq.~37! are both incorrect.
There is a simple explanation for this discrepancy. In d

riving Eq. ~36!, Rosso, Bacchi, and Barbera make the
sumption thath5d/2, a hypothesis first suggested by Ma
delbrot @1#. In arriving at the relationh5d/2, Mandelbrot
states in@1# that ‘‘(basin area)1/2 should be proportional to
~distance from source to mouth as the crow flies!.’’ In other
words,a}L1/2. However, as noted in Eq.~3!, observations of
real networks show thata}LD where D,2 @9#. Further-
more, on examining the resulth5 ln Rs/ln Rn with the expres-
sion for D in Eq. ~32! we see that

h5
d

D
, ~38!

which suggests that this hypothesis is valid only whenD
52. Consider also the test case of the Scheidegger m
whereh52/3, D53/2, andd51 ~see Table II!. Using these
values, we see that Eq.~38! is exactly satisfied while the
relationh5d/2 givesh51/2Þ2/3.

Now, if h5d/D is used in place ofh5d/2 in deriving Eq.
~36! then Eq.~32! is recovered. It also follows that Eq.~37!
simplifies to the statementRa5Rn , further demonstrating
the consistency of our derivations. Thus, the two Eqs.~36!
and~37! become redundant and the only connection betw
Horton’s ratios and network dimensions is given by Eq.~32!.

An important point is thatD,2 does not implythat drain-
age basins are not space filling. This exponent shows h
basin area changes when comparing different basins
different values ofL, i.e.,a}LD. Any given single basin has
of course a fractal dimension of 2. The equating of the w
basin sizes change with the actual dimension of any
particular basin is a confusion evident in the literature~see,
for example,@6#!. Incorporating the effects of measuring b
sin area with boxes of side lengthd in the relationa}LD

would lead to the form

aL~d!}d22LD, ~39!

where the subscriptL has been used to emphasize that d
ferent values ofL correspond to different basins. Thus, f
any given basin~i.e., for fixed L), the area scales withd
while for a fixed d, areas of different basins scale as p
Eq. ~3!.

th
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It should also be emphasized that the relationship fo
here between Hack’s exponent and the fractal dimensiod
andD is one that is explicitly derived from the assumptio
made. The observation that basin areas scale nontriv
with L follows from these starting points and thus there is
need to assume it here.

IX. OTHER SCALING LAWS

We now address three remaining sets of scaling la
These are probability distributions for areas and stre
lengths, scaling of basin shape, and Langbein’s law.

As introduced in Eq.~4!, probability distributions fora
and l are observed to be power law with exponentst andg
@23#. Both of these laws have previously been derived fr
Horton’s laws. De Vries, Becker, and Eckhardt@56# found a
relationship betweent, Rn , andRs but did not included in
their calculations while Tarboton, Bras, and Rodrı´guez-
Iturbe @6# obtained a result forg that did incorporated.

Again, both of these derivations use Horton’s laws
rectly rather than the modified version of Eq.~22!. Asymp-
totically, the same results are obtained from both approac

t522
ln Rs

ln Rn
and g5

ln Rn

ln Rs
. ~40!

Using the form of the Hack exponent found in Eq.~38! and
Eq. ~32!, further connections between these exponents
found:

t522h and g5
1

h
. ~41!

One important outcome concerns the fact that only one
the exponents of the triplet (h,t,g) is independent. Previ
ously, for the particular case of directed networks, this
been shown by Meakin, Feder, and Jossang@14# and further
developed by Colaioriet al. @64#. Directed networks are
those networks in which all flow has a nonzero positive co
ponent in a given direction. In a different setting, Ciepl
et al. also arrive at this same conclusion for what they de
to be the separate cases of self-similar and self-affine
works although their assumptions are thatd,1 andD,2
are mutually exclusive contrary to empirical observatio
@65#. In the case of nondirected networks, Maritanet al.have
found one scaling relation for these three exponents,g51
1(t21)/h and, therefore, that two of these three expone
are independent. They further noted thatt522h is an ‘‘in-
triguing result’’ suggested by real data@9#. In the present
context, we have obtained this reduction of description i
very general way with, in particular, no assumption rega
ing the directedness of the networks.

The scaling of basin shapes has been addressed alr
but it remains to show how it simply follows from our a
sumptions and how the relevant exponents are related.
enough to show that this scaling follows from Hack’s la
Now, the area of a basin is related to the longitudinal len
L and the widthL' by a5L'L, while the main stream length
scales by assumption likel;Ld. Hence,

l;ah⇒Ld;~L'L !h⇒L';Ld/h215LD21 ~42!
d
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where the fact thath5d/D has been used. Comparing this
Eq. ~3! we obtain the scaling relation

H5D21. ~43!

The last set of exponents we discuss are those relatin
Langbein’s law@3#. Langbein found thatL̃, the sum of the
distances~along streams! from stream junctions to the outle
of a basin, scales with the area of the basin. Recently, M
tan et al. @9# introduced the quantityl, which is an average
of Langbein’sL̃ except now the sum is taken over all poin
of the network. Citing the case of self-organized critical n
works, they made the claim that

l}Lw. ~44!

Further, they assumed thatw5d although it was noted tha
there is no clear reason why this may be so since there
evident differences in definition (l involves distances down
stream whiled involves distances upstream!. We find this
scaling relation to hold in the present framework. We furth
consider the two related quantitiesL andl̃, respectively, the
sum over all points and the average over all junctions
distances along streams to the basin outlet.

The calculations are straightforward and follow the ma
ner of previous sections. We first calculatel(v,V), the typi-
cal distance to the outlet from a stream of orderv in an order
V basin. Langbein’sL̃, for example, is then obtained a
(v51

V n(v,V)l(v,V). We find the same scaling behavio
regardless of whether sums are taken over all points or
junctions. Specifically we find

L;L̃;a11 ln Rs / ln Rn and l;l̃;Ld, ~45!

yielding the scaling relations

b5b̃511 ln Rs / ln Rn and w̃5w5d. ~46!

Note that the second pair of scaling relations admit ot
methods of measuringd. The large amount of averaging in
herent in the definition of the quantityl would suggest that
it is a more robust method for measuringd than one based on
measurements of the sole main stream of the basins.

Maritan et al. @9# provide a list of real world measure
ments for various exponents upon which several comme
should be made. Of particular note is the relationship
tween t522h. This is well met by the cited values 1.4
,t,1.45 and 0.57,h,0.60. Also reasonable is the est
mate ofh given byd/D (D5f in their notation! which is
0.58,h,0.65.

The values ofg and w, however, do not work quite so
well. The latter does not matchd within error bars, although
they are close in absolute value withw51.0560.01 andd
51.1060.01. The length distribution exponentg may be
found via three separate routes:g51/h5D/d51/(22t).
The second and third equalities have been noted to be
satisfied and so any one of the three estimates ofg may be
used. Take, for example, the range 0.58,h,0.59, which
falls within that given byh522t, h5d/D and the range
given forh itself. This points to the possibility that the mea
sured range 1.8,g,1.9 is too high, since usingg51/h
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yieldsg51.7460.02. Also of note is that the scaling relatio
g511(t21)/h of Maritan et al. would suggestg51.74
60.05.

Better general agreement with the scaling relations is
be found in@30#, in which Rigonet al. detail specific values
of h, t, and g for some thirteen river networks. Here, th
relationst522h andg51/h are both well satisfied. Com
parisons for this set of data show that, on average and g
the cited values ofh, botht andg are overestimated by onl
2%.

X. CONCLUDING REMARKS

We have demonstrated that the various laws, expone
and parameters found in the description of river netwo
follow from a few simple assumptions. Further, all quantit
are expressible in terms of two fundamental numbers. Th
are a ratio of logarithms of Horton’s ratios, lnRn /ln Rs, and
the fractal dimension of individual streamsd. There areonly
two independent parameters in network scaling laws. Th
Horton ratios were shown to be equivalent to Tokunag
law in informational content with the attendant assumpt
of uniform drainage density. Further support for this obs
vation is that both the Horton and Tokunaga descriptio
depend on two parameters each and an invertible transfo
tion between them exists@see Eqs.~12!, ~15!, and ~17!#. A
summary of the connections found between the various
ponents is presented in Table IV.

It should be emphasized that the importance of laws
that of Tokunaga and Horton in the description of netwo
is that they provide explicit structural information. Oth
measurements such as the power law probability distr
tions for length and area provide little information about ho
a network fits together. Indeed, information is lost in t
derivations as the Horton ratios cannot be recovered f
knowledge of lnRn /ln Rs, andd only.

The basic assumptions of this work need to be critica
examined. Determining how often they hold and why th
hold will follow through to a greater understanding of a
river network laws. One vital part of any river networ
theory that is lacking here is the inclusion of the effects
relief, the third dimension. Another is the dynamics of n
work growth: why do mature river networks exhibit a se
similarity that gives rise to these scaling laws with the
particular values of exponents? Also, extensive studies
variations in drainage density are required. The assump
o

en

ts,
s

se

se
s
n
-
s
a-

x-

e
s

-

m

y
y

f
-

e
of
n

of its uniformity plays a critical role in the derivations an
needs to be reexamined. Lastly, in those cases where t
assumptions are valid, the scaling relations gathered h
provide a powerful method of cross-checking measureme

Finally, we note that work of a similar nature has recen
been applied to biological networks@66#. The assumption
analogous to network self-similarity used in the biologic
setting is considerably weaker as it requires only that
network is a hierarchy. A principle of minimal work is the
claimed to further constrain this hierarchy to be self-simil
It is conceivable that a similar approach may be found
river networks. However, a generalization of the concept o
hierarchy and perhaps stream ordering needs to be devel
since a ‘‘Tokunagic network’’ is not itself a simple hiera
chy.
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TABLE IV. Summary of scaling laws and the scaling relatio
found between the various exponents. Compare with Table I.

Law Parameter in terms ofRn, Rs , andd

Tn5T1(RT)n21 T15Rn2Rs2212Rs /Rn

RT5Rs

l;Ld –
nv11 /nv5Rn –

s̄v11 / s̄v5Rs
–

l̄ v11 / l̄ v5Rs
–

āv11 /āv;Ra
Ra5Rn

l;ah h5 ln Rs /ln Rn

a;LD D5d ln Rn /ln Rs

L';LH H5d ln Rn /ln Rs21
P(a);a2t t522 ln Rs /ln Rn

P( l ); l 2g g5 ln Rn /ln Rs

L;ab b511 ln Rs /ln Rn

l;Lw w5d

L̃;ab̃ b̃511 ln Rs /ln Rn

l̃;L w̃ w̃5d
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