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Unified view of scaling laws for river networks
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Scaling laws that describe the structure of river networks are shown to follow from three simple assump-
tions. These assumptions dfig river networks are structurally self-simildg) single channels are self-affine,
and (3) overland flow into channels occurs over a characteristic distéheénage density is uniformWe
obtain a complete set of scaling relations connecting the exponents of these scaling laws and find that only two
of these exponents are independent. We further demonstrate that the two predominant descriptions of network
structure(Tokunaga’s law and Horton’s lawsre equivalent in the case of landscapes with uniform drainage
density. The results are tested with data from both real landscapes and a special class of random networks.
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PACS numbsgs): 64.60.Ht, 92.40.Fb, 92.40.Gc, 68.7Qv

I. INTRODUCTION II. ORDERING OF STREAMS

A basic tool used in the analysis of river networks is the

If it is true that scaling laws abound in naturg], then . . o
. . . device of stream ordering. A stream ordering is any scheme
river networks stand as a superb epitome of this phenom; 2
at attaches levels of significance to streams throughout a
enon. For over half a century, researchers have uncover

. ; . asin. Most orderings identify the smallest tributaries as low-
numerous power laws and scaling behaviors in the math- . " . .
i L : . est order streams and the main or “trunk” stream as being of
ematical description of river networf2-9|. These scaling

. . ._highest order with the intermediary “stream segments”
laws, which are usually parametrized by exponents or ratlog anning this range in some systematic fashion. Stream or-
of fundamental quantities, have been used to validate scor

rings allow for logical comparisons between different parts

of numerical and theoretical models of landscape evolution, o netyork and provide a basic language for the description
[10-23 and have even been invoked as evidence of selfys network structure.

organized criticality[23,24]. However, despite this wide- _ Here, we build our theory using the most common order-
spread usage, there is as yet no fundamental understandifigy scheme, one that was first introduced by Horton in his
of the origin of scaling laws in river networks. seminal work on erosiofi2]. Strahler later improved this

It is the principal aim of this paper to bring together a method[27] and the resulting technique is commonly re-
large family of these scaling laws within a simple, logical ferred to as Horton-Strahler stream order[2g]. The most
framework. In particular, we demonstrate that from a base ohatural description of this stream ordering, due to Melton
three assumptions regarding network geometry, all scalinfR8], is based on an iterative pruning of a tree representing a
laws involving planform quantities may be obtained. Thenetwork as shown in Fig. 1. All sourder external streams
worth of these consequent scaling laws is then seen to reate pared away from the tree, these being defined as the
squarely upon the shoulders of the structural assumptiondetwork’s first order stream segments. A new tree is thus
themselves. We also simplify the relations between the decreated along with a new collection of source streams and
rived laws, demonstrating that only two scaling exponentghese are precisely the second-order stream segments of the
are independent. original network. The pruning and order identification con-

present preliminary definitions of network quantities and gihe river network is left. The overall order of the basin itself
list of empirically observed scaling laws. Our assumptiond identified with the highest stream order present.

will next be fully stated along with evidence for their valid- dThe ur?ual and _eqw\_/alegr;[ d\?\fﬁ”pt'on details how stre?m
ity. Several sections will then detail the derivations of the®'ders change at junctiori3]. When a stream segment o

various scaling laws, being a combination of both new in-Order @i merges with a stream segment of ordey, the

sights of our own as well as previous results. Progressing ifUt90ing stream will have an order af given by

a systematic way from our assumptions, we will also be re-

quired to amend several inconsistencies persistent in other

analyses. The theory will be tested with comparisons to data w=maX ®1,02)+ 8y, 0, @)

taken from real landscapes and Scheidegger’'s random net-

work model[25,26.
where§ is the Kronecker delta. In other words, stream order
only increases when two stream segments of the same order

* Author to whom correspondence should be addressed. Electronitome together and, otherwise, the highest order is main-
address: dodds@mit.edu tained by the outflowing stream.
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FIG. 1. Horton-Strahler stream orderin@ shows the basic

FIG. 2. A planform view of an example basin. The main defin-
ing parameters of a basin aagthe drainage ardathe length of the
main stream, antlj andL, , the overall Euclidean dimensions. The
sub-basin with primed quantities demonstrates that a basin exists at
every point in a network.

IIl. PLANFORM NETWORK QUANTITIES
AND SCALING LAWS

The results of this paper pertain to networks as viewed in
planform. As such, any effects involving relief, the vertical
dimension, are ignored. Nevertheless, we show that a coher-
ent theory of planform quantities may still be obtained. This
section defines the relevant quantities and their various per-
mutations along with scaling laws observed to hold between
them. The descriptions of these laws will be short and more
detail will be provided in later sections.

The two essential features in river networks are basins
and the streams that drain them. The two basic planform
guantities associated with these are drainage area and stream
length. An understanding of the distribution of these quanti-
ties is of fundamental importance in geomorphology. Drain-
age area, for example, serves as a measure of average dis-
charge of a basin while its relationship with the length of the
main stream gives a sense of how basins are shaped.

A. General network quantities

Figure 2 shows a typical drainage basin. The basin fea-
tures ares, the areal, the length of the main stream, ahg
andL  , the overall dimensions. The mafar trunk stream
is the dominant stream of the network—it is traced out by
moving all the way upstream from the outlet to the start of a
source stream by choosing at each junciionfork) the in-
coming stream with the largest drainage area. This is not to
be confused with stream segment length which only makes
sense in the context of stream ordering. We will usually
write L for L. Note that any point on a network has its own
basin and associated main stream. The sub-basin in Fig. 2
illustrates this and has its own primed versionsapf, L,
andL, . The scaling laws usually involve comparisons be-
tween basins of varying size. These basins must be from the

network. (b) is created by removing all source streams from theSame landscape and may or may not be contained within
network in (a), these same streams being denoted as first ordeach other.

“stream segments.” The new source streams in the pruned network Several scaling laws connect these quantities. One of the
of (b) are labeled as second-order stream segments and are themost well known is Hack’s lavj5]. Hack’s law states thdt

selves removed to givee), a third-order stream segment.

scales witha as
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|~ah, (2) TV:Tl(RT)V_l' (7)

whereh is often referred to as Hack’s exponent. The impor- . . . ,
tant feature of Hack’s law is that1/2. In particular, it has W€ refer to this last identity as Tokunaga's law. _
been observed that for a reasonable span of basin sizes that | € Network parametdr, is the average number of major
0.57<h<0.60[5,9,29,30. The actual range of this scaling is side tributaries per stream segm_ent. So for a coIIe(_:tlon of
an unresolved issue with some studies demonstrating th&f'€am segments of ordey, there will be on average, side
very large basins exhibit the more expected scalingh of tributaries of ordew—1 for each_ stream segment. The sec-
—1/2[31-33. We simply show later that while the assump- ©Nd network parameteRy describes how numbers of side
tions of this paper hold so too does Hack’s law. tributaries of successively Iowgr orders increase, again, on
Further comparisons of drainage basins of different size@/€rage. As an example, consider that the network in Fig. 1
yield scaling in terms ot.(=L), the overall basin length. 'S Part of a much larger network for which,=2 andRy

Area, main stream length, and basin width are all observed tﬁ”" Figure 1b) shows that the third-order stream segment

scale withL [9,6—8,34 as two major side tributaries of second order that fits ex-
T actly with T,=2 (Note that the two second-order stream
a~LP, I~LY% L,~L"M 3 segments that come together to create the third-order stream

segment are not side tributariegigure Xa) further shows
Turning our attention to the entire landscape, it is alsonine first order tributaries, slightly above the average eight
observed that histograms of stream lengths and basin areasggested byl ,=T;R7=8. Finally, again referring to Fig.

reveal power law distributiong9,23]: 1(a), there are 9/4 2.25 first-order tributaries for each sec-
ond order stream segment, not far from the expected number
P(a)~a™” and P(l)~I177. 4) T,=2.

There are any number of other definable quantities and we
will limit ourselves to a few that are closely related to each
other. We write\ for the average distance from a point on  Horton introduced several important measurements for
the network to the outlet of a basialong streamsandA for ~ networks in conjunction with his stream orderifig]. The
the unnormalized total of these distances. A minor variatiorfirst is the bifurcation ratidR,,. This is the ratio of the num-

of these aréx andA, where only distances from junctions in Pern,, of streams of orde® to the numben,,. ; of streams

2. Horton’s laws

the network to the outlet are included in the averages. of orderw+1 and is, moreover, observed to be independent
The scaling law involving these particular quantities is©Of @ over a large range. There is next the stream length ratio,
Langbein’s law3], which states that Rs=s,.1/s,, wheres,, is the average length of stream seg-
ments of ordekw. These lengths only exist within the context
A~aP. (5)  of stream ordering. In contrast to these are the main stream
- - - lengths, which we have denoted bynd described in Sec.
Similarly, we havex~L¢, A~a”, and\~L¢¥ [9]. Il A. Main stream lengths are defined regardless of stream
ordering and, as such, are a more natural quantity. Note that
B. Network quantities associated with stream ordering stream ordering gives rise to a discrete set of basins, one for

each junction in the network. We therefore also have a set of

With the introduction of stream ordering, a whole new . : . ; .
Qasm areas and main stream lengths defined at eachﬁmctlon.

collection of network quantities appear. Here, we present the ™~ i
most important ones and discuss them in the context of whataking averages over basins of the same order we bgve
we identify as the principal structural laws of river networks: and| , to add to the previously definesj, andn,, .

Tokunaga’s law and Horton’s laws. The connection between the two measures of stream
length is an important, if simple, exerci$d0]. Assuming
1. Tokunaga's law s,+1=RsS, holds for allw, one has

Tokunaga’s law concerns the set of ratigg,, ,,/} first
introduced by Tokunagg85—-39. These “Tokunaga ratios” © " (R)“—1
represent the average numbgr of streams of asddtowing 1,= z {IZE (Rs)iflglzﬂﬁ (8)
into a stream of ordew as side tributaries. In the case of i=1 i=1 s
what we will call a “structurally self-similar network,” we
have thafl,, ,,=T,_, =T, Wwherev=w— ' since quanti- - — . .
ties involving comparisons between features at different€7€ 11=51 has been used. Since typicalR;>2 [41],
scales should only depend on the relative separation of thode+1/! ,— Rs rapidly. Foro =4 andRs=2, the error is only

scales. Thes®,, in turn, are observed to be dependent suct3%. On the other hand, starting with the assumption that
that[35], main stream lengths satisfy Horton's law of stream lengths

for all w implies that the same is true for stream segments.
T,:1/T,=Ry, (6) Thus, for most calculations, Horton’s law of stream

lengths may involve either stream segments or main streams
whereR; is a fixed constant for a given network. Thus, all of and, for convenience, we will assume that the law is fully
Tokunaga'’s ratios may be specified by two fundamental pasatisfied by the former. Furthermore, this small calculation
rametersT,; andRy: suggests that studies involving only third- or fourth-order



4868

PETER SHERIDAN DODDS AND DANIEL H. ROTHMAN

PRE 59

TABLE I. A general list of scaling laws for river networks. All laws and quantities are defined in Sec. Ill.
The principal finding of this paper is that these scaling laws follow from the first two relations, Tokunaga’s
law (structural self-similarityand the self-affinity of single channels, and the assumption of uniform drainage
density(defined in Sec. IV ¢

Law

Name or description

T,=Ty(Rp" !
[~Ld
nw+l/nw: Rn

Tokunaga's law
self-affinity of single channels
Horton'’s law of stream numbers

Smﬂ/gw: Rs Horton's law of stream segment lengths
T,e1/1,=R Horton’s law of main stream lengths
a,:1/a,=R, Horton’s law of stream areas

[~a" Hack’s law

a~LP scaling of basin areas

L, ~L" scaling of basin widths

P(a)~a™ " probability of basin areas

P()~I"7 probability of stream lengths

A~af Langbein’s law

A~L*® variation of Langbein’s law

A ~ab as above

N~L® as above

networks cannot be presumed to have reached asymptotior the Tokunaga ratid; or the Horton ratioRR, and R,
regimes of scaling laws. We will return to this point through- our own simulations show that these stream order laws are
out the paper. strictly obeyed. Table Il lists the relevant exponents and their
Schumm([42] is attributed with the concrete introduction values for the Scheidegger model along with those found in
of a third and final law that was also suggested by Hortonreal networks.
This last ratio is for drainage areas and states Rat
=a,1/a,. We will later show in Sec. VIl that our assump-
tions lead to the result thi®,=R,,. At this stage, however,
we write Horton’s laws as the three statements

IV. ASSUMPTIONS

We start from three basic assumptions about the structure
of river networks: structural self-similarity, self-affinity of
individual streams and uniformity of drainage density. We

Ay+1 define these assumptions and their relevant parameters and

and —=R,.
Ne+1 Se a,

9

TABLE II. Ratios and scaling exponents for Scheidegger’s ran-
A summary of all of the scaling laws presented in thiSdom network model and real networks. For Scheidegger's model,
section is provided in Table I. Empirically observed valuesexact values are known due to the work of Takayasu and co-
for the relevant exponents and ratios are presented in Tablgorkers[43—48 and approximate results are taken from our own
Il simulations. For real networks, the references given are generally
the most recent and further appropriate references may be found

C. Scheidegger’s random networks within them and also in Sec. Ill.

To end this introductory section, we detail some of theQuantity Scheidegger Real networks
features of the random network model of Scheidegger
[25,26. Although originally defined without reference to a Rn 2.20£0.05 3.0-5.449]
real surface, Scheidegger networks may be obtained from a Ra 5.20+0.05 3.0-6.049]
completely uncorrelated landscape as follows. Assign a ran- Rs 3.00£0.05 1.5-3.449]
dom height between 0 and 1 at every point on a triangular T2 1.30=0.05 1.0-1.936]
lattice and then tilt the lattice so that no local minithekes d 1 1.1+0.01[9]
remain. Scheidegger networks are then traced out by follow- D 3/2 1.8-0.1[9]
ing paths of steepest descent. h 213 0.57-0.6Q9]

Surprisingly, these networks still exhibit all of the scaling = 4/3 1.43+0.02[9]
laws observed in real networks. It thus provides an important vy 3/2 1.8+0.1[30]
point in “network space” and accordingly, also provides an ¢ 1 1.05-0.01[9]
elementary test for any theory of scaling laws. Exact analyti- H 1/2 0.75-0.8Q9]
cal results for various exponents are known due to the work g 5/3 1.56[3]
of Takayasu and co-workers on the aggregation of particles 1 1.05+0.01[9]

with injection [43-48. While there are no analytic results
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then discuss their mutual consistency. We end with a discudength of all stream segments of all orders arid the drain-

sion of the correspondence between the laws of Tokunagage area. More generally, one can in the same way measure
and Horton. It should be stressed that while we make a caselocal drainage density for any connected sections of a net-

for each assumption there is also considerable proof to porwork within a landscape. Such sections should cover a re-

der in the pudding that these ingredients create. gion at leass; in diameter, the typical length of a first-order
stream. Drainage density being uniform means that the varia-
A. Structural self-similarity tion of this local drainage density is negligible. There is good

ssupport in the literature for the uniformity of drainage den-

Our first assumption is that networks are structurally self->-"Fr: :
P y sity in real networkg$5,52—58 while there are some sugges-

similar. It has been observed that river networks exhibit self=> ) : .
similarity over a large range of scalgk6,23. Naturally, the tions Fhat It may vary sl|ghtly with orde[|5,3§].
physical range of this self-similarity is restricted to lie be- Umform drainage density may also be interpreted as the.
tween two scales. The large scale cutoff is the overall size gpPServation that the average distance between channels is
the landscape and the small scale cutoff is of the order of thEO“g_th _constant throughout a Ian_ds_caiﬁQS], an estimate
characteristic separation of channg3g. of thls.d|stanc_e b(_alng simply A/ This is dl_Je to the fact that

In order to quantify this phenomenon, we look to laws ofthere is a finite limit to the channelization of a landscape

network structure such as Tokunaga’s law and Horton’s lawdetermined by a combination of soil properties, climate and

of stream number and length. We demonstrate in the followSC M- Implicit in this assumption is that the channel network

ing section that these descriptions are mutually consister{t2S réached its maximum extension into a lands¢ape7].
within the context of our third assumption, uniformity of 'ndeed, In the bold words of Glodl67], we are considering

drainage density. Thus, we may assume a network wherdver networks at the “time of completed territorial con-
both Tokunaga’s and Horton's laws hold. For conveniencegue‘q'” Furthermore, ShreJ&2] notes that drainage density

we write these laws as if they hold for all orders down to theVould be uniform in a “mature topography developed in a
homogeneous environment.

first order. Any actual deviations from these laws for low . )
orders will not affect the results since we are interested in 'Mportantly, our third assumption connects the planform

how laws behave for increasing stream order. description to the surface within which the network lies.

We note here that the second and more stringent requiré}omputationally, the uniformity of drainage density allpws
ment provided by Eq(6) may be seen to sit self-consistently TOF the use of;he l‘:‘ngth of a stream as a proxy for drainage
with the assumption of uniform drainage density. This will 2'68[56]- Further, the average distance between streams be-
be discussed later together with the equivalence betweefld roughly constant implies that, on average, tributaries are

Tokunaga's law and the well-known Horton’s laws. spac;ed evgnly along a stream. .
Finally, it should be noted that nearly all lattice-based

models of landscape evolution satisfy this assumption. This
is simply because a flow direction is usually calculated at

Our second assumption is that individual streams are selieach point of some regular two-dimensional lattice. Conse-
affine curves possessing a dimensn 1, as introduced in  quently, streams are defined everywhere. For each lattice unit
Eqg. (3). Empirical support for this premise is to be found in length of stream there is lattice cell's worth of drainage area.
[6—-9,23,5]. In reality, this is at best a weak fractality with Notably, the typical analysis of digital elevation models
measurements generally findidgto be around 1.19]. We  (DEM's) proceeds in the same fashion.
assumal to be constant throughout a given network, true for
each stream independent of order.

In general, it is most reasonable to consider this in the
sense of a growing fractal: stream lengjthill grow like L¢
wherelL is the overall length of a box containing a portion of ~ This section demonstrates an equivalence between
a stream. So, rather than examine one fixed section of @okunaga’s law and Horton’s two laws of stream number
stream, we take larger and larger pieces of it. Moreover, thiand stream length in the case of a landscape with uniform
is the most reasonable method for actually measutifay a  drainage density.
real network.

B. Self-affinity of individual streams

V. TOKUNAGA'S LAW AND HORTON'S LAWS
ARE EQUIVALENT

C. Unif drai densi A. From Tokunaga'’s law to Horton’s laws
.unitorm drainage enS|ty
Tokunaga has shown that Horton's law for stream num-

Our third and final assumption is that drainage density i,grs follows from Tokunaga’s lafgiven in Eq.(7)] [36,38.
uniform throughout a network. For a given basin, the drain-this follows from the observation that,, the number of

age densityp is a measure of the average area drained pegreams of ordew, in a basin of ordef) may be expressed
unit length of stream by overland flog.e., excluding con-  5¢

tributions from tributary streamslts usual form is that given

by Horton[2]: Qo
nwzznw+l+ Zl TVnw+V' (11)
> s
=0 (10 The 2, ; accounts for the fact that each ordet- 1 stream

is initiated by the confluence of two streams of order
where, for a given basings represents the summed total Presuming Tokunaga’s law, a simple analysis of Edl)
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shows that in the limit of largé€), the ration,/n, ., does (a)
indeed approach a constant. This leads to an expression for

the Horton ratidR,, in terms of the two Tokunaga parameters

T, and Ry (first obtained by Tokunaga if86)):

2R,=(2+R;+ T +[(2+R;+T,)2—8R;]¥2 (12 (b)

Tokunaga’'s work has been recently generalized by Peck-
ham, who deduces links to the other Horton rafandR,
[38]. In contrast to the purely algebraic calculation Ry,
these results require the step of equating topological proper- (c)
ties to metric basin quantities. In determiniRg, Peckham
uses the number of side tributaries to a stream as an estimate
of stream segment length. This is based on the assumption
that tributaries are evenly spaced. As discussed in Sec. IV Cro
this even spacing of tributaries follows for networks with
uniform drainage density. Therefore, we may write, after
Peckham, that

FIG. 3. An example rescaling of a basin to demonstrate how
kunaga’s law follows from Horton'’s laws and uniform drainage
density. In the first step fronfa) to (b), the streams of the small
network are rescaled in length by a factorRyf. The second step
from (b) to (c) demonstrates that for drainage density to remain

0-1 constant and uniform, a sufficient number of first-order tributaries
gwoc:H_ Z T, (13) must be added.
v=1

. . . .. Consider a stream of order along with its side tributar-
where the dimension of length absent on the right-hand S|dpes of orderw’ =1 throughe’ = w— 1, the numbers of which
is carried by an appropriate constant of proportionality. This '

are given by the usual, where v=w—w’ (see Fig. 3

sum is simply the total number of tributaries that, on AVelgince the presumed adherence to Horton’s laws implies that
age, enter a stream of order. The number of lengths of

. e : . a network is self-similar we need only consider the form of
Etertraam between tributaries is then simply one more in numg, T, and not the more generdl, ,,. Now, again since
. , , networks are self-similar, a typical stream of ordet 1 can
Using Tokunaga's laiEq. (7)] we find that be obtained by scaling up the picture of this ordestream.
As per Horton’s law of stream lengths, this is done by in-
creasing the length of each stream by a factdRgffFig. 3(a)
becomes Fig. ®)].
However, since orde®’ streams become’+1 streams
in this rescaling, the picture in Fig(l3 is missing first order
R=R; (15)  streams. Also, the average distance between tributaries has
grown by a factor oR;. Therefore, to retain the same drain-
and we will useR; in place ofR; throughout the rest of the age density, an extraRg—1) first-order streams must be
paper. As already noted we will see tHa{=R, for land-  added for each linkone more than the number of tributadies
scapes where drainage density is uniform. This redundancgiong this new orde® + 1 strean{Fig. 3(c)]. Since the num-
means that there are only two independent Horton raRgs, ber of first-order streams is now given By, ; we have
andR,, which sits well with the two independent quantities

Syi1/8,=Rr(1+O(Ry) ™), (14)

obtaining Horton’s stream length ratio with the simple iden-
tification

required for Tokunaga's lawl; andRy. Presupposing this D :
result, we can invert Eq$12) and(15) to obtain Tokunaga's To+1=(Rs—1) ;1 T, 1) (18
parameters from the two independent Horton ratios:
R=R., (16) It may be simply checked that this equation is satisfied, for
largew, by Tokunaga ratios given by E¢). Thus, Horton’s
T,=R,—Rs—2+2R./R,. (17)  laws of stream number and stream length and the uniform

drainage density are seen to imply Tokunaga’s law.
In general, Horton’s ratios rather than the parameters of
Tokunaga’s law will be the most useful parameters in what
We now provide an heuristic argument to show thatfo|lows. In particular, we will see that the two independent
Tokunaga’s law in the form of Eq7) follows from Horton's  quantities R, and Rg will be needed only in the form
laws of stream number and length and uniform drainage denn R /In R,. All other exponents will be expressible as alge-
sity. Note that even though we have shown in B), (15),  praic combinations of IR, /In R, andd, the fractal dimension
and(17) that the parameters of Tokunaga'’s law and those 0ff an individual stream.
Horton’s laws may be obtained from each other, it is aot Furthermore, exampléor moda) values for the param-
priori clear that this result would be true. Indeed, Tokuna-gters of Horton and Tokunaga 486,41
ga’s law contains more direct information about network
structure than Horton’s laws and it is the additional con-
straint of uniform drainage density that provides the key. T,=1, Ry=Rs=2, and R,=4. (19

B. From Horton’s laws to Tokunaga'’s law
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The parameters have been chosen so as to satisfy the inv@mis equation may be exactly solved. Considering the above
sion relations of Eq(17). As shown in Table Il, real net- expression forn’(w,)) and the corresponding one for
works provide some variation around these modal values’(w+ 1)) we can reduce this to a simple difference equa-
These will be used as rough checks of accuracy throughotion,
the rest of the paper.
N(0,Q)=2+Rs+ TN (w+1,Q)—-2R,n" (0 +2,Q),
VI. HACK'S LAW (21)

One of the most intriguing scalings found in river net- which has solutions of the formX. Applying the constraints
works is Hack’s law[5], which relates main stream length to thatn’(Q,Q)=1 andn’(Q—-1,Q)=T;+2, we obtain
basin area as~a". This equation has been empirically
shown to hold true for a large range of drainage basin sizes n'(0,Q)=c(u)* *+(1-c)(u_ )" *, (22
on many field siteg23]. The salient feature is that for
smaller basing30], h is typically found to be in the range Where
(0.56,0.60), whereas 0.5 would be expected from simple di-
mensional analysif23]. 2u.=(2+Re+ T £[(2+Rs+Ty) —8Rg¥2 (23

It should be emphasized that Hack’s law is only true on
average as are, for that matter, Tokunaga’s law and Hortonand
laws. An extension of Hack’s law to a more natural statistical

— 2
description of the connection between stream lengths and ¢=Rn(Rh—Ry)/(R—2Ry). (24)
drainage areas was suggested by Marigal.[9] with some ) ) )
further developments to be found [i68]. Note thatR,= «. and we will use the notatioR}; in place

of w_. This observation regarding Horton’s law of stream

numbers was first made by Tokund@&] and later by Smart

[60]. In particular, Tokunaga noted that this would explain
In order to obtain Hack’s law, we will use the uniformity the deviation of Horton’s law for the highest orders of a

of drainage density to estimate the area of an ofdldrasin  pasin, a strong motivation for his work.

by calculating the total length of streams within the same e can now define an effective Horton ratR,’ (w,Q)

basin. So we simply need the typical length and number ofs follows:

each stream order present. Taking the length of a source

stream,s;, to be the finest resolution of the network and the Ry (0,Q)=n"(0—10)/n"(w,0)
ba§|(:_11|1|t of IiT?Lh the length .of a.. st.ream segment of order —R,(1+O(RY/R,) (@), (25
w is s,=(Rs)“™ *s;. However, in finding the frequency of
such streams we find that some care must be taken for t
following reasons.

Horton’s law of stream numbers is potentially misleading
in that it suggests, at first glance, that within a basin of orde
o there should be one stream of orderR,, streams of order

A. Horton’s other law of stream numbers

hf‘a‘ne typical values of Horton’s ratios in E¢19) give R
=1. In this caseR,’ (w,{) converges rapidly t&®,, with an
grror of around one per cent far=—3.

w—1, R? streams of ordew—2, and so on. Indeed, many B. Hack's law
calculations involving Horton’s laws use this assumption As discussed in Sec. IV C, an estimate of total drainage
[7,23,56,59. area of a basin is given by the total length of all streams

But Horton’sR,, actually provides the ratio of the number within the basin. Summing over all stream orders and using
of streams of consecutive orders as totalled fovhwle ba-  the numbers’ (w,Q) given by Egs(22) and(23) we have
sin. To illustrate this fact, consider streams of orderand  that
w+1 within a basin of orde)>w. As Tokunaga’'s law

makes clear, streams of order are not all found within 2 , ol

sub-basins of orde® + 1. Indeed, a certain number of order agm;l n"(0,Q)(Ry)

o streams will be tributaries to streams of order greater than

w+1 [see the example network of Fig(al]. Tokunaga’s =C1(Ry)+Co(Ry) T —c3(R¥) Y, (26)

law shows that we should in fact expett+2 rather than

than R, streams of ordemw entering into a stream of order where c;=c/(R,—Ry), c3=(1—c)/(Rs—R%) and c,=c;

w+1. For the typical value§;=1 andR,=4 in Eq. (19 —c, with ¢ being given in Eq(24). Slightly more compli-

this is a substantial error. cated is the estimate af( »,Q), the drainage area of a basin
We proceed then to find a corrected version of Horton'spf grder « within a basin of ordef):

law of stream numbers. Returning to E41), we see that it

is only valid in the limitQ)—o. Definingn’(w,) as the o ®

actual number of streams of orderwithin a basin of order a(w,Q)*[1n'(0,0)] >, n'(e’,Q)(Ry)® 1

), we have w'=1

00 =[1n" (0, D)]{c1(R) 1= (Rs/Ry) ]
n'(w,Q)=2n"(0+1,0)+ V; T,n' (0+1,Q). (20 L ea(RYUREZ (11— (RMRYT).  (27)
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Now, for 1<w<() (typically, 3<w<Q—2 is sufficien, Order w for stream number data
this expression is well approximated as 8 6 4 2

O stream number

a(w,Q)~(Ry). (28) 10" | o stream area (km?)
sinceR,>Rs>R} .

Thus, we have also shown here thy=R,,. While it is
true that we would have obtained the same with a naive use 107
of Horton’s laws, we have both made the derivation thor-
ough and established the correction terms found in(Eg.

This will be investigated further in the next section. 10°

Finally, using this result and the estima_tlgoc(RS)“’ from g
Eq. (8), it follows that

2 4 6 8

|_wOc ( Rs)w: (Rn) oINRg/INR, _ (gw)ln Rs/In Rn’ (29) Order w for stream area data

FIG. 4. Average area and stream number as functions of stream
which is precisely Hack’s law. Comparing Eq89) and(2),  order for Kentucky River, Kentuckydata taken from Peckham
Hack’s exponent is found in terms of the Horton ratRs  [38]). The stream number data is reversed for simpler comparison
andR; as with the area data. The Horton ratios are estimated tRpeR,

=4.65+0.05.
InRg

_ (30 average area and stream number plotted as a function of
InR, order for the Kentucky River while Fig. 5 shows the same
for the Powder River. Note that stream number has been

fTheLe IS one minor cavee;]t todthg de.r|vat|.onr:n E2p) an% plotted against decreasing stream order to make the compari-
or that matter, to most other derivations in this paper. EqUag,, cjear, The exponenk, andR, are indistinguishable in

tion (29 only holds for the characteristic areas and lengths)oth cases. For the Kentucky RiveR,~R,=4.65+0.05
= . 2= 4. .

a, andl_w. Since these quantities grow exponentially with and for the Powder RiveR,~R,=4.55+0.05. Also of note
w, the derivation gives evenly spaced points on a log-lothere is that the same equality is well satisfied by Scheideg-

plot lying on a straight line. Clearly, this would indicate that ger's model where numerical simulations yield values of
the actual relationship is continuous and linear on a log-loqR_=5.20+0.05 andR,=5.20+0.05.

plot. Indeed, there is no obvious reason that a network would Note the slight deviation from a linear form for stream

prefer certain lengths and areas. The averaging of streagumpers for large in both cases. This upwards concavity is

lengths and areas brought about by the imposition of streas predicted by the modified version of Horton's law of

ordering necessarily removes all information contained instream numbers for a single basin, E2Q).

higher-order statistics. Motivated by this observation, gener- At the other extreme, the fit for both stream areas and
alizations of the laws of Tokunaga, Horton, and Hack to lawssiream numbers extends &= 1. While this may seem re-

of distributions rather than averages is in progrés3. markable, it is conceivable that at the resolution of the
DEM'’s used, some orders of smaller streams may have been
VII. THERE ARE ONLY TWO HORTON RATIOS removed by coarse graining. Thus=1 may actually be,

for example, a third-order stream. Note that such a transla-
tion in the value ofw does not affect the determination of the
ratios as it merely results in the change of an unimportant

In deriving Hack’s law in the previous section we ob-
tained from Eq.(28) thatR,=R, . This redundancy in Hor-
ton’s laws is implicit in, amongst others, the works of Horton

[2] and HacK5] but has never been stated outright. As noted Order w for stream number data
previously, Peckham also obtains a similar result for a topo- 8§ 6 4 @ 2
logical quantity, the number of source streams in a basin, O stream number )

that is used as an estimate of area. Thus, we see that for a 10"}
landscape with uniform drainage density, Horton’s laws are
fully specified by only two parameteR, andR;. This fur-
ther supports our claim that Tokunaga’'s law and Horton’s )
laws are equivalent since we have shown that there is an 10" ¢
invertible transformation betweerT{,Rt), the parameters
of Tokunaga’s law, andR,,,Rs) [Egs.(12), (15), and(17)].
In this section, we present data from real networks that sup- 10°
port the findingR,=R,. We also address reported cases that :
do not conform to this result and consider a possible expla-
nation in light of the correction terms established in Ex§).

Excellent agreement for the resu®,=R, in real net-
works is to be found in the data of Peckh&Bg]. The data is FIG. 5. Average area and stream number as functions of stream
taken from an analysis of DEM’s for the Kentucky River, order for Powder River, Wyomin¢ata taken from Peckhaf88]).
Kentucky and the Powder River, Wyoming. Figure 4 showsHere the ratios ar®,~R,=4.55+ 0.05.

O stream area (km?)

2 4 6 8

Order w for stream area data
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Order w for stream number data TABLE Ill. Values of Horton ratios obtained from least squares
10 8 6 4 2 estimates of slopes for data represented in Fig. 6. The range indi-
10°F O stream number ) cate§ the data points used in the estimate of the slopes. The ratios
A stream area (kn?) > obtained from the Ipw order data Qemonstrate subgtantla! error
0 stream length (km) whereas those obtained from the middle data essentially give the
. true values oR,,=R,=4.
10}
I  range 12,3 1,2,34 1,2,3,45 4,5,6,7,8
) R, 2.92 3.21 341 3.99
107 Ra 5.29 4.90 4.67 4.00
10" Thus, the validity of the methods and results from past

2 4 6 8 10

Order w for stream area and length data

work are cast in some doubt. A reexamination of data that
has yieldedR,> R, appears warranted with an added focus

FIG. 6. An explanation for the empirical finding thet <R, . on drainage density. Moreover, it_ is clear that networks of a
Fitting a line to the stream area for only low would result in an Much higher order must be studied to produce any reason-
overestimate of its asymptotic slope. For stream number, its slop@ble results.
would be underestimated.

VIIl. FRACTAL DIMENSIONS OF NETWORKS:

multiplicative constant. lfw, is the true order and= w, A REVISION

—m, wherem is some integer, then, for example,
g P A number of papers and works over the past decade have

n,%(Ry)“~ (R,)“~™M=consi (R,)"". (31) analyzed the rela_tionsh_ips that exist betw_een Horton’s laws
and two fractal dimensions used to describe river networks
This is only a rough argument as coarse graining does ngP—8:59,61-68 These ar®, the dimension which describes
necessarily remove all streams of low orders. the scaling of the total mass of a network, ahdhe fractal
At odds with the result thaR, =R, are past measure- d|menS|qn of |nd|v!dual streams th{:\t comprises one of our
ments that uniformly findR,>R,, at a humber of sites. For assumptions. In this section, we b_rlefly review these_z results
example, Rosset al. in [59] examine eight river networks &nd point out several inconsistencies. We then provide a re-
and findR, to be on average 40% greater thap. Clearly, vision that f!ts W|th|n t.he context of our assumptions.
this may be solely due to one or more of the our assumptiong  OUr starting point is the work of La Barbera and Rosso
not being satisfied. The most likely would be that drainag 1, which was improved by Tarboton, Bras, and Rgdaz-
density is not uniform. However, the limited size of the dataIturbe to give[8]
sets points to a stronger possibility which we now discuss. InR
In the case of59], the networks considered are all third =d—-~".
or fourth order basins with one exception of a fifth order InRs

basin. As shown by Eq(26), if Horton’s laws of stream , . . .
number and length are exactly followed for all orders, Hor-We f|nd.th|§ rela_t|on to be correct but that the assumptions
and derivations involved need to be redressed. To see this,

ton’s law of area is not obeyed for lower orders. Moreover, te that Eq(32 h o follow ¢ b
the former are most likely asymptotic relations themselves. ipote tha 9(32) was shown to fo ow from two observa-

is thus unsatisfactory to make estimates of Horton's ratiogions. The first was the estimation bi(s;), the number of
from only three or four data points taken from the lowest-boxes of sizes; X s; required to cover the netwoil]:
order basins. Note that the Kentucky and Powder rivers are L

both eighth-order networks and thus provide a sufficient N(s;)~(sq) "MRn/NRs (33
range of data.

We consider more precisely how the corrections to thevheres; is the mean length of first order stream segments.
scaling of area given in Eq27) would affect the measure- Note that Horton’s laws were directly used in this derivation
ment of the Horton ratios. Figure 6 shows an example ofather than the correctly modified law of stream numbers for
how stream number, length, and area might vary witlitis  single basingEq. (22)]. Nevertheless, the results are the
assumed, for the sake of argument, that stream number a”r@me asymptotically. The next was the inclusion of our sec-
length scale exactly as per Horton's laws and that area beynd assumption, that single channels are self-affigle
haves as in Eq27), satisfying Horton's law of area only for Thus, it was claimeds;~ 6~ ¢ whereé is now the length of

higher values ofv. The plot is made for the example values e measuring stick. Substitution of this into E§3) gave
R,=4 andRs=2. The prefactors are chosen arbitrarily so

the ordinate is of no real significance. N(8)~ 5 dInRa/INRs (34)

A measurement dR, from a few data points in the low
range will overestimate its asymptotic value as will a similaryielding the stated expression for, Eq. (32).
measurement dR,, underestimate its true value. Estimates of However, there is one major assumption in this work that
R, andR, from a simple least squares fit for various rangesneeds to be more carefully examined. The network is as-
of data are provided in Table III. sumed to be of infinite order, i.e., one can keep finding

(32
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4 assumption, we have thaj,cL9 and thus
2 .. —d
Z:: D\“N\‘~\ . N(L)MLdlanllnRs, (35)
- - Bo aa o \‘ ~ .
D”D InR, which gives the same value f&r as Eq.(32).
- o N bR There are two other relations involving fractal dimensions
o N that also need to be reexamined. First, Rosso, Bacchi, and La
o N Barbera[59] found that
o \\\
o o, In Rg
. o _ d= 2In R (36)
In § Iné 2
FIG. 7. A schematic representing the problems associated Witr(f\'ombmmg Eqs(32) and (36), they then obtained
measuring the fractal dimension afsingle river networkHere, the nR
box counting method is assumed aAd which has the units of =2 ”_ (37)
length, is the side length of thid(5) boxes needed to cover the In R,

network. For box sizes much greater ttgrx s, only the network )
structure is detected while for box sizes smaller tisar s, the However,_ Eq.(36) and hence Eq('37) are b(.)th Incorrect.

measurement picks out the fractal dimension of individual streams.. _There is a simple explanathn for this discrepancy. In de-
Some deviation towards the scaling suggested by (B4 may  1Ving Eq. (36), Rosso, Bacchi, and Barbera make the as-
occur between these two limits. sumption thath=d/2, a hypothesis first suggested by Man-

delbrot[1]. In arriving at the relatiorh=d/2, Mandelbrot
smaller and smaller streams. As we have stated, there is ates in[1] that “(basin area)? should be proportional to
finite limit to the extension of any real network. The possible(distance from source to mouth as the crow fliesn other
practical effects of this are pictorially represented in Fig. 7.words,axL'2 However, as noted in E¢3), observations of
Consider that the network in question is of actual orfler ~ real networks show thatcLP where D<2 [9]. Further-
Then there are three possible scaling regimes. First, for gnore, on examining the resuit=In Ry/In R, with the expres-

ruler of length 8>s,, only the network structure may be Sion forD in Eq.(32) we see that

detected, given that individual streams are almost one dimen-

sional. Here, the scaling exponent will beRgIn R;. Next, h= E (39)

as 6§ decreases, the fractal structure of individual streams D

may come into play and the exponent would approach that of

Eq. (34). Depending on the given network, this middle sec-Which suggests that this hypothesis is valid only whzn
tion may not even be present or, if so, perhaps only as & 2. Consider also the test case of the Scheidegger model
small deviation as depicted. Finally, the contribution due towhereh=2/3, D=3/2, andd=1 (see Table ). Using these

the overall network structure must vanish by the tithalls ~ values, we see that E¢38) is exactly satisfied while the

below s;. From this point on, the measurement can only'¢ldtionh=d/2 givesh=1/2#2/3. =
detect the fractal nature of individual streams and so the NOW. if h=d/D is used in place dfi=d/2 in deriving Eq.
exponent must fall back td. (36) thgn Eq.(32) is recovered. It also follows that ECB?_)

We therefore must rework this derivation of E§2). As  Simplifies to the statemerR,=R,, further demonstrating
suggested in the definition afin Sec. IV B, it is more rea- (he consistency of our derivations. Thus, the two HGS)
sonable to treat networks as growing fractals. Indeed, sinc@nd(37) become redundant and the only connection between
there is a finite limit to the extent of channelization of a HOrton's ratios and network dimensions is given by £29).
landscape, there is a lower cutoff length scale beyond which An important pointis thab <2 does not implghat drain-
most network quantities have no meaning. The only reasor9€ basins are not space filling. This exponent shows how
able way to examine scaling behavior is to consider howPasin area changes when comparing different basins with
these quantities change with increasing basin size. This idifferent values oL, i.e.,axL". Any given single basin has
turn can only be done by comparing different basins of in-Of course a fractal dimension of 2. The equating of the way

creasing order as opposed to examining one particular basRfiSin sizes change with the actual dimension of any one
alone. particular basin is a confusion evident in the literat(see,

With this in mind, the claim that E¢(32) is the correct for @xample[6]). Incorporating the effects of mgasurin% ba-
scaling can be argued as follows. Within some basin of ordefin area with boxes of side leng#hin the relationa~L
Q, take a sub-basin of ordes. ConsideN(w), the number Would lead to the form

of po_xes of siqle Iengtb1 required to cover the sub-network. a (8)x 5 2LP, (39)
This is essentially given by the total length of all the streams

in the network. This is given by thew approximation of \hare the subscript has been used to emphasize that dif-
Eq. (28 and so we have thdl(w)=(R,)®. Using the fact  tgrent values oL correspond to different basins. Thus, for
that s,=(R)“"'s; we then have that N(w) any given basini.e., for fixedL), the area scales witd

% (s, /s,)" /"R The difference here is thay is fixed and ~ while for a fixed 8, areas of different basins scale as per
pertains to the actual first-order streams of the network. B¥EQ. (3).
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It should also be emphasized that the relationship foundvhere the fact that=d/D has been used. Comparing this to
here between Hack’s exponent and the fractal dimensions Eg. (3) we obtain the scaling relation
andD is one that is explicitly derived from the assumptions
made. The observation that basin areas scale nontrivially H=D-1. (43
with L follows from these starting points and thus there is no ) )
need to assume it here. The last set of exponents we discuss are those relating to
Langbein’s law{3]. Langbein found thaf\, the sum of the
IX. OTHER SCALING LAWS distance_s{along stregn”bsfrom stream junctiqns to the outlet _
of a basin, scales with the area of the basin. Recently, Mari-
We now address three remaining sets of scaling lawstan et al. [9] introduced the quantity, which is an average

These are probability distributions for areas and streamys Langbein’sA except now the sum is taken over all points

lengths, scaling of basin shape, and Langbein’s law. of the network. Citing the case of self-organized critical net-
As introduced in Eq(4), probability distributions fora  \yorks, they made the claim that

and| are observed to be power law with exponentand y

[23]. Both of these laws have previously been derived from NocL?. (44)

Horton’s laws. De Vries, Becker, and Eckhaf86] found a

relationship between, R,, andR; but did not included in Further, they assumed that=d although it was noted that

their calculations while Tarboton, Bras, and Rgdez- there is no clear reason why this may be so since there are

Iturbe [6] obtained a result foty that did incorporatel. evident differences in definitiom(involves distances down-
Again, both of these derivations use Horton's laws di-stream whiled involves distances upstreame find this

rectly rather than the modified version of E§2). Asymp-  scaling relation to hold in the present framework. We further

totically, the same results are obtained from both approachegensider the two related quantitidsandX, respectively, the
sum over all points and the average over all junctions of
IR and  v= InR, (40) distances along streams to the basin outlet.
InR, Y n Rs The calculations are straightforward and follow the man-
ner of previous sections. We first calculatéw,(}), the typi-
Using the form of the Hack exponent found in E§8) and  cal distance to the outlet from a stream of or@ein an order

Eq. (32), further connections between these exponents ar@ pasin. Langbein’sA, for example, is then obtained as

=2

found: 2 n(0,Q)\(0,Q). We find the same scaling behavior
regardless of whether sums are taken over all points or all
r=2-h and y—= (41  lunctions. Specifically we find
H
A~A~altMRs/MRy gnd  A~X~LY, (45)

One important outcome concerns the fact that only one of
the exponents of the tripleth(r,y) is independent. Previ- yielding the scaling relations
ously, for the particular case of directed networks, this has 5 5
been shown by Meakin, Feder, and Jossdrt and further B=pB=1+InRs/InR, and ¢=¢=d. (46)
developed by Colaioriet al. [64]. Directed networks are
those networks in which all flow has a nonzero positive comNote that the second pair of scaling relations admit other
ponent in a given direction. In a different setting, Cieplak methods of measurind. The large amount of averaging in-
et al. also arrive at this same conclusion for what they deenhierent in the definition of the quantity would suggest that
to be the separate cases of self-similar and self-affine neit is a more robust method for measuridghan one based on
works although their assumptions are tllat1 andD<2  measurements of the sole main stream of the basins.
are mutually exclusive contrary to empirical observations Maritan et al. [9] provide a list of real world measure-
[65]. In the case of nondirected networks, Marittral. have ~ ments for various exponents upon which several comments
found one scaling relation for these three exponepts]l  should be made. Of particular note is the relationship be-
+(7—1)/h and, therefore, that two of these three exponentdween 7=2—h. This is well met by the cited values 1.41
are independent. They further noted that2—h is an “in-  <7<1.45 and 0.5%h<0.60. Also reasonable is the esti-
triguing result” suggested by real daf]. In the present mate ofh given byd/D (D= ¢ in their notation which is
context, we have obtained this reduction of description in &.58<h<0.65.
very general way with, in particular, no assumption regard- The values ofy and ¢, however, do not work quite so
ing the directedness of the networks. well. The latter does not matahwithin error bars, although
The scaling of basin shapes has been addressed alreaigy are close in absolute value wigh=1.05+0.01 andd
but it remains to show how it simply follows from our as- =1.10=0.01. The length distribution exponent may be
sumptions and how the relevant exponents are related. It found via three separate routeg=1/h=D/d=1/(2— 7).
enough to show that this scaling follows from Hack’s law. The second and third equalities have been noted to be well
Now, the area of a basin is related to the longitudinal lengtisatisfied and so any one of the three estimateg ofay be
L and the widthL, bya=L L, while the main stream length used. Take, for example, the range 688<0.59, which
scales by assumption like-L%. Hence, falls within that given byh=2— 7, h=d/D and the range
given for h itself. This points to the possibility that the mea-
I~a"=L9~(L, L)"=L, ~L¥""1=P~1 (42  sured range 18y<1.9 is too high, since using’=1/h
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yields y=1.74+0.02. Also of note is that the scaling relation =~ TABLE IV. Summary of scaling laws and the scaling relations
y=1+(7—1)/h of Maritan et al. would suggesty=1.74 found between the various exponents. Compare with Table I.
+0.05.

Better general agreement with the scaling relations is to Law Parameter in terms @&, R, andd
be found in[30], in which R_igonet gl. detail specific values T,=Ty(Ry)" T,=R,~Re—2+2R./R,
of h, 7, and y for some thirteen river networks. Here, the R.—R
relations7=2—h and y=1/ are both well satisfied. Com- | _ 4 T
parisons for this set of data show that, on average and given N /n =R 3
the cited values of, both 7 and y are overestimated by only ~ —*** @ ™"

2% Sw+1/sw:RS -
|_w+1/|_w: Rs -
X. CONCLUDING REMARKS a,+1/a,~Ry Ra=R,
) [~an h=InR/INR,

We have demonstrated that the various laws, exponents, __| o D=dInR,/INR,
and parameters found in the description of river networks L ~LH H=dInR /InR—1
follow from a few simple assumptions. Further, all quantities Pl(a)~a*’ 7=2—InR/INR,
are expressible in terms of two fundamental numbers. These P(1)~1-7 —IR /R,
are a ratio of logarithms of Horton’s ratios, Ry/In Rg, and A—af ﬁ11+|n R/NR.
the fractal dimension of individual streardsThere areonly o B
two independent parameters in network scaling laws. These )N‘NIZ - ¢=d
Horton ratios were shown to be equivalent to Tokunaga’'s A~a° B=1+InR/InR,
law in informational content with the attendant assumption X~L¢ e=d

of uniform drainage density. Further support for this obser
vation is that both the Horton and Tokunaga descriptions
depend on two parameters each and an invertible transformaf its uniformity plays a critical role in the derivations and
tion between them exis{see Eqgs(12), (15), and(17)]. A  needs to be reexamined. Lastly, in those cases where these
summary of the connections found between the various exassumptions are valid, the scaling relations gathered here
ponents is presented in Table IV. provide a powerful method of cross-checking measurements.
It should be emphasized that the importance of laws like Finally, we note that work of a similar nature has recently
that of Tokunaga and Horton in the description of networksbeen applied to biological networ$6]. The assumption
is that they provide explicit structural information. Other analogous to network self-similarity used in the biological
measurements such as the power law probability distribusetting is considerably weaker as it requires only that the
tions for length and area provide little information about hownetwork is a hierarchy. A principle of minimal work is then
a network fits together. Indeed, information is lost in theclaimed to further constrain this hierarchy to be self-similar.
derivations as the Horton ratios cannot be recovered frontt is conceivable that a similar approach may be found in
knowledge of IrR,/InRs, andd only. river networks. However, a generalization of the concept of a
The basic assumptions of this work need to be criticallyhierarchy and perhaps stream ordering needs to be developed
examined. Determining how often they hold and why theysince a “Tokunagic network” is not itself a simple hierar-
hold will follow through to a greater understanding of all chy.
river network laws. One vital part of any river network
theory that is lacking here is the inclusion of the effects of
relief, the third dimension. Another is the dynamics of net-
work growth: why do mature river networks exhibit a self- We are grateful to R. Pastor-Satorras, J. Pelletier, G.
similarity that gives rise to these scaling laws with theseWest, J. Weitz, and K. Whipple for useful discussions. The
particular values of exponents? Also, extensive studies ofvork was supported in part by NSF Grant No. EAR-
variations in drainage density are required. The assumptio706220.
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